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ABSTRACT 

This paper describes a fast and efficient method 
for minimization of two level single output Boolean 
functions. The minimization problem is reduced to 
that of coloring of the graph of incompatibility of 
implicanm. The program permits also to remove static 
hazards and allows inversion of output’s polarity which 
proves to be very convenient when designing with 
PAL’s, It gives solutions within a very reasonable 
amount of time. On small industrial examples its 
speed is slightly better than Espresso and it occupies 6 
times less memory. 

1. INTRODUCTION. 

There has been recently an interest in programs for optimization 
of PLAs and PALS: Presto [7], Espresso [4], Espresso-mv [ZS], 
Presol-II [l], Mini [14], 121, [3], IS]. Two approaches are 
currently known: algorithms that look for the minimum solution: 
[lo]> 12711 1281, 161, [I211 1251, 141, [30], [9], 1161 ad wroxi- 
mate algorithms [4], 171, [14]. The most advanced programs for 
minimum solution are Espresso-Exact [27], 128) and McBoole 
[ll]. Detailed comparison of these two programs is given in [27]. 
All algorithms which search for the minimal solutions include two 
stages: generation of prime implicants and minimum covering of 
minterms with prime implicants. The number of prime implicants 
increases rapidly with the number of minterms, especially for 
functions with many don’t cares. The set of prime implicants can 
become too large to enumerate even if it is possible to represent 
the function in two-level form [19]. This result limits the appli- 
cation of algorithms based on generating sll prime implicants. The 
covering problem is NP-hard [12]. Some functions that lead to 
extremely hard to solve covering problems have been constructed 
(161. It results then that there are two reasons why the current 
approaches to exact minimization will meet limited success. 

We have developed a new approach which produces minimum 
solutions without generating prime implicants and without solving 
the covering problem at all. 

Our approach is general and can be applied to many covering 
problems that occur in Boolean minimization. We reduce the cov- 
ering problems to the coloring problems. In this paper we will 
present only one application: minimization of completely specified 
single-output functions in a-valued algebra. (Our general method 
has some special properties for completely specified functions, 
very strongly unspecified functions, multi-output and multi-valued 
functions). 
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Instead of solving the covering problem with prime implicants we 
solve the coloring problem for a graph whose nodes correspond to 
minterms or some implicants of a new type. Therefore, we solve 
one NP-hard problem (graph coloring) instead of two NP-hard 
problems (generation of implicants and covering). 

Graph coloring can be solved approximately or exactly. We have 
written several graph coloring algorithms of both types. In this 
paper the coloring algorithms will be not discussed and the results 
will be given for an approximate coloring algorithm. Replacing this 
algorithm with the optimal graph coloring algorithm will produce 
minimum solutions [24]. 

The graph for coloring is created with any on-cubes of the func- 
tion as nodes. These can be minterms, arbitrary cubes (product 
implicants), minimal product implicants of the function or disjoint 
minimum implicants proposed below. Minimal implicant for a 
minterm M is a product of all prime implicants covering M. The 
number of such implicsnts never exceeds the number of minterms 
or the number of prime implicants. 

2. SOME BASIC DEFINITIONS. 

Boolean functions are implemented as arrays (sets) of cubes. The 
following notation will be used: ON[f] is a set of ON-cubes of 
function f. OFF[f] is a set of OFF-cubes of function f. DC[f] is a 
set of Don’t-Care cubes of function f. Cube Ci is astring of O’s, 
l’s, and X’s; it represents a product of liter& of function f. An 
implicant of a function is an arbitrary subset of its on-cubes and 
dc-cubes. A product implicant is an implicant being a cube. A 
prime implicant is a product implicsnt which is not included into 
any other product implicant of that function. E denotes belongs to 
a set. > means inclusion of arrays of cubes or cubes (S 2 T if 
the set of all minterms of T is included in the set of all minterms 
of S). n denotes an intersection of arrays of cubes (S n T is 
some set of cubes that includes all minterms that are included 
both in S and in T). 

Ezample: 
{oix,oxi) n ~io,oxi) = (01x n x10) u (01x f-j 

0x1) u (0x1 n x10) u (0x1 f-j 0x1) = 010 u oil 
u 011 = 010 u 011 =01x. 

[P] * is a set of minterms included in function (product implicant) 
P. # denotes a sharp operator (S # T contains all of the min- 
terms of S which are not contained by T). 

Example: 
0xX # 01x = 00x. 

3. COMPATIBLE IMPLICANTS AND COMPATIBLE SETS. 

The goal of this section is to discuss some properties of product 
implicants, which are essential for the reduction method that will 
be presented in section 4. 

First, we introduce the matching operator, which is a main logic 
operation in our system. 

Definition 1. Let Cl = (Cl’ , . . . . Cln) and C2 = (G2’, . . . . 
02”) be cubes, where n is the number of input variables. The 
matching operator is defined as follows: 
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Cl,2 = (C1,2i, . ..) C1,2”) = Cl $ c2 = (Cl’ 3 c2’, 
‘.‘j Cl” $ C2”) where the operation 8 on single bit is defined as 
fOllOWS: 

Cl’ 
Cl’ 8 c2’ = x 

when Cl’ = C2’ 

otherwise 

When the positional cube notation is used this operator 
corresponds to the componentwise Boolean OR of the two cubes. 
This holds true for any m-valued algebra (see [28]). This 
definition permits for application of our method basically with no 
modifications to Boolean algebras with multiple-valued inputs 
1291, [26]. The definition of matching of Cl and C2 is the same 
as the definition of the supercube of Cl and C2 from [27]. For 
ease of notation and consistency with our previus papers 1221 we 
will however continue to use the name of matching and symbol 8. 
The operation 0 is commutative and associative and the result 
of its operation is always a cube. 

Theorem 1. Let PI be a prime implicant of a completely or a par- 
tially specified Boolean function f. Then, for each set SM of pro- 
duct implicante (paricularly minterms) of the function f which are 
covered by PI: 

SM = {ml, mz, ___ , m,} c [PI]* C ON(f) U DC(f) 

the following relation holds 

i.e., a cube resulting from the matching of all minterms included 
in any subset of minterms of a prime implicsnt of a Boolesn func- 
tion is a product implicant of this function. (It is not necessarily a 
prime implicant) 

The proofs are omitted. They can be found in [24]. 

Definition 2. We say that product implicants MIi and MIj are 
compatible when MIi $ MIj is an implicant of function f, i.e. when 
there exists no maxterm Z t OFF(f) such that MIi 8 MIj 2 Z. 
Product implicants MIi and MIj which are not compatible will be 
called incompatible. A set of product implicants CM will be 
called a compatible set when 

In other words a compatible set is a set of product implicants 
whose matching is disjoint with the OFF-set of the function. 

A set of product implicants CP will be called a set of compatible 
pairs when 

( v {MT;,MZj} C CP) [ (MZi 8 Mrj) n OFF(f) = d ] 

In other words a set of compatible pairs is one in which a match- 
ing of any two product implicants is disjoint with the OFF-set. 

Any subset of the set of product implicants included in a prime 
implicant is then compatible and the matching of any compatible 
set of product implicsnts is a product implicant of the function. 
Any compatible set is also a set of compatible pairs. The opposite 
statement is however not true, as shown in the following example. 

Ezample 1. The Karnaugh map for function f is given in Fig. 1, 
where Ml = X00, M2 = 1X0, M3 = 10X, and Z = 011. 

We have that Ml $ M2 = xX0 2 Z = 011, 
Ml$M3=XOXz Z=Oll, 
M2 8 M3 = 1Xx Y& Z = 011, 

But Ml$M2LM3=XXX> Z=Oll. 

Hence, set ml, M2, M3) is not a compatible set. 

Fig. 1. 

The following theorems were used to create the discussed below 
algorithms. 

Theorem 2. Let CPR be a set of cubes covering all minterms and 
don’t cares included in a product implicant PR. Then 

0, cL=pR 

This means that matching of all cells of Karnaugh map included in 
a cube produces this cube. 

‘Iheorem 3. Let C be a set of cubes covering cells (O-cubes) with 
minterms and don’t cares. If 
()J Ci,Gj c c)[(G $ cj)n OFF(f) = 41 
then 

1) PR = c t cCr is a product implicent 

and 
2) (w Cic C) [pR C G] 
‘Bmoram 4. If the function f is completely specified, then a set of 
compatible pairs is also a compatible set. 

This theorem is important since it simplifies and speeds up the 
synthesis of the completely specified functions. This is because 
for such functions if each pair of product implicants from set S is 
compatible then matching of all implicants from S is a product 
implicant of a function. 

4. REDUCIION OF TWO LEVEL SINGLE OUTPUT 
BOOLEAN FUNCIlON MINIMIZATION 

TO THE MINIMAL GRAPH-COLORING PROBLEM. 

The purpose of this section is to discuss how the minimization of 
a single-output Boolean function can be reformulated as a Graph 
Coloring problem. 

Let us create the non-ordered graph GIM = (SMI, RS), where 
SMI is the set of nodes of the graph corresponding to the cubes of 
function f snd RS is the set of non-oriented edges such that 

e = (MIl, M12) e RS if and only if MI1 is incompatible 
with M12. 

This graph will be called “Graph of Incompatibility of Implicants” 
(GIM). This graph is next colored. A number will be then 
assigned to each product implicant of the function f. We will call 
these numbers the colors of the implicants. Hence, there exists a 
coloring function: COLF( SMI( f)) -+ N such that each node of the 
graph is assigned with a specific color. N is the set of natural 
numbers. 

The property of this function ensures that any two incompatible 
product implicants will be given two different colors. We will call 
this the property of “Proper Coloring”. Hence, 

If MI1 e SMI(f) & MI2 E SMI(f) & (MIl,MIS) E RS 
then COLF(MI1) # COLF(M12) 

So a Proper Coloring will be defined ss one in which different 
values of the function GOLF are assigned to any pair of nodes 
which sre connected by an edge (MIl, M12) t RS. 

Definition 3. A Compatible Coloring is a proper coloring in which 
each set of nodes of the graph having the same color is a compati- 
ble set of implicants of the function. 

By finding the compatible coloring of the graph with the minimum 
number of colors, we minimize the number of compatible sets of 
implicants, and then the number of prime implicants in the cover. 

‘Ibeorem 5, The minimal number of compatible sets of product 
implicants is the same as the number of prime implicants in the 
minimal cover of the function. 

The conclusion of the Theorems 4 and 5 is that for the completely 
specified functions the proper coloring is the compatible coloring 
as well, thus the minimum solution to the graph-coloring gives 
also the minkmum solution to the single-output optimization prob- 
lem. Single-output optimization is useful for PALS and EPLDs, 
since in these structures the products are not shared among sums. 
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Each output function can be thus minimized separately. 

After completing the compatible coloring of graph GIM all the 
nodes of this graph are assigned to a specific color. If function f is 
a completely specified function, then by matching those implicants 
which have the same color we obtain product implicants of the 
minimal solution. The treatment for incompletely specified func- 
tions is slightly different [24] and is not a concern of this paper. 

A completely specified function is described by sets ON(f) and 
OFF(f) alone. One of them is enough and the other one can be 
found from complementation. Such functions are often met in 
the current engineering practice at the system design level. 

Ezample 2. Fig. 2 shows the Karnaugh map for a given function: 
ON ( f(X1, X2, X3, X4)) = {oooo, 0011, 0100, 1101, 1111, 
loll}. 

Node 1 = 0000 

Node2 = 0011 

Node3 = 0100 

Node4 = 1101 

Node5 = 1111 

Node6 = 1011 

xl 

Fig. 2. 

By matching each pairs of nodes, we create graph GIh4 from Fig. 
3a. 

n Node 123456 
1 010111 
2 101110 
3 010111 
4 111001 
5 111000 

R 6 101100 

1 = an edge between two nodes. 
there is no edge between two nodes 

Fig. 3a. Fig. 3b. 

This graph can be represented by a incompatibility matrix from 
Fig. 3b. 

The minimum number of colors needed for this graph is three. 
The coloring with colors A, B and C is shown in Fig. 3a. Accord- 
ing to Theorem 5 this means that we can realize the minimal solu- 
tion for this function with three product implicants. By matching 
minterms with color A, we get 0000 $ 0100 = 0X00. Similarly, 
by matching minterms with color B, we get 0011 $ 1011 = X011. 
Finally, by matching minterms with color C we get 1101 $ 1111 = 
11x1. 

so, f(X1, x2, x3, X4) = (0X00, x011, 11X1) --- 
or f = X1,X3.X4 + x2X3.X4 + X1.X2.X4 

Discussion: 
In the above example, we used minterms to create graph GIM. 
There are three reasons for it. 

1. Graph coloring gives an absolute minimum solution if we 
start out with minterms. (Graph coloring tries all the combi- 
national ways to match two cubes in the graph. This guaran- 
tees that we have searched all possible way of grouping a 
given cube to .the rest of the graph). 

2. For larger functions it is impractical to create the graph with 

minterms. Some of the reasons are: the numbers of min- 
terms are too large, of the order of two to power of N 
inputs; the graph will then be too large to construct. This 
suggests that some thing must be done to the input func- 
tions before invoking the graph coloring routine. 

3. All the terms in the above example are disjoint. In fact, the 
performance of the Graph Coloring algorithm will be much 
degraded if the input cubes were non-disjoint. 

The nodes of the GIM graph can correspond to minterms, disjoint 
product implicsnts, disjoint minimum implicants or minimal pro- 
duct, implicants. The advantage of using minterms is a warranty of 
optimum solution, the disadvantage is the size of the graph. The 
advantage of using arbitrary disjoint product implicants is the exe- 
cution speed and simplicity of the algorithm. The advantage of 
using minimal product implicants [24] is, like for minterms, a 
warranty of the optimum solution, but the number of such impli- 
cants is usually smaller than the number of minterms. For many 
industrial functions it is more likely to approximate the number 
of products in the solution. Disjoint minimum implicants also 
produce minimum solution. In our experiments such implicants 
produced fastest solutions, but we suspect that with a new pro- 
cedure to generate minimal product implicants the synthesis based 
on them will be faster. In this paper disjoint minimum implicants 
will be used. 

Several variants of the algorithm can be created by parametrization 
of the minimization procedures. 

The graph can be created from: 
- minterms, 
- disjoint product implicants, 
- minimal product implicanta, 
- disjoint minimum implicanta. 

Function can be realized as: 
- sum of product, 
- product of sums. 

The graph can be colored by using: 
- heuristic, non backtracking algorithm for approximate minimiza- 

tion, 
- optimal backtracking algorithm for solution with minimum 

number of implicants. 

The solution can be: 
- hazardous, 
- hazardfree. 

The implicante from the solution can be: 
- prime implicants (to minimize power, increase reliability and 

foldability), 
- arbitrary product implicants. 

These lead to the algorithm PALMINI discussed in the next sec- 
tion. 

5. PALMINI. 

Description of PALMINI: 
_ input: cubes (product implicants) of completely specified 

functions in terms of sum of products. The input cubes can 
be overlapping. 

output: a minimized version of the function. 

features as options: 
1. Form of input cubes for Graph Coloring. 
2. Optimal and quasi-optimal Graph-coloring s&o- 

rithms. 
3. Invert the polarity of the output. 
4. Check for Static Hazards for combinatorial outputs. 
5. Minimize the number of liter& in each term of the 

function. 

6.1. Main procedures of PALMINI. 

Paper 33.3 
617 



procedme cOMPL( SMI); 
This procedure returns the complement&an of the input function 
contained in SMI. The Disjoint Sharp method is currently 
employed. At the end of each loop, the list OFF is passed to pro- 
cedure ABSORBE to delete redundant terms. 

procedure CRWTEDISJOIN~SMI); 
This procedure receives inputs from input sets SMI. It then 
returns a set of disjont cubes back into set SMI. The algorithm is 
as follows: 
for i = 1 to (last cube in SMI - 1) 
begin 

for j = i + 1 to last cube in SMI 
begin 

if cubei intersects cubej then 
begin 

list D = cubei # cubej; 
cubej is deleted from SMI; 
list D is added to SMI; 

end; 
end; 

end; 

procedure CREATEMINIMAL( SMI) ; 
This procedure is used to create disjoint minimum product impli- 
cants. In general, only implicants of this type (or ones included in 
them, like minterms) assure the minimum solution if the solution 
to graph coloring problem is also optimal. 

1. Find all consensuses of cubes from SMI and add them to 
the set SMI. 

2. Find all products of pairs, pairs of pairs, pairs of pairs of 
pairs, etc. of cubes from SMI; remembering for each new 
product cube the product cubes that it originates from. This 
is done in the form of the (directed, acyclic) graph. An 
arrow points from cube1 to cube2 if cube2 originates from 
cubel. 

3. Remove from the tree all cubes, that are cube unions of 
other cubes from the graph. This is done from top to hot 
tom of the graph (starting from largest cubes). 

4. Remove from the tree all cubes that are included into single 
cube only. 
The remaining cubes in the tree are the disjoint minimum 
implicants. Return them as a value of CREATEMINIMAL. 

Example 3. For function f(a, b, c, d) = {0X01, X1X1, 011X, 
1100, 1011) the consensuses are {110X, 1X11, 01X1). The pro- 
ducts of cubes are (0101, 0111, 1101, 1111). After removal of 
products being unions of other products the set SMI is = {llOO, 
1011, 011X, 0X01, 0101, 0111, 1111, 1101). After removing of 
cubes that are included into only one cube the set SMI = (1100, 
1101, 1111, 1011, 011X, 0X01). This set is used to create graph 
GIM. 

procedure GRAPH (SMI, OFF, GIM) ; 

This procedure will construct graph GIM from disjoint set SMI 
and set OFF which contains the complementation of the input 
function. 

The algorithm is as follows: 
for i = 1 to (last cube in SMI - 1) 
begin 

for j = 1 to last cube in SMI 
begin 

if (cubei 8 cubej) n OFF # $ then 
GIM(i,j) = GIM (j,i) = 1 

{an edge exists between node i and node j} 
else GIM(i, j) = GIM(j, i) = 0; 

{no edge exists between node i and node j} 
end; 

end; 

procedure COLOR( GIM, c&l); 
This paper presents only a non-backtracking, approximate algo- 
rithm. For optimal graph-coloring algorithms see [24], [15], [18]. 

This procedure will use GIM as its input and return cost.1 as the 
number of colors needed to color this graph. The method to 
assign a new color is as follows: the first node is assigned color 1. 
For any following node j, we first assign color 1 as a temporary 
color for that node j. Then starting from node 1, we search for 
edges between current node j and previous nodes. We only assign 
the next color to node j if there is an edge between the current 
node j and a previous node and only if the color of this previous 
node is the same as that of the current node j. This helps us elim- 
inate the backtracking portion. This procedure is approximate, but 
gives good results. 

procedure DELETELITERAL(SOL, OFF); 
This procedure takes each term in SOL and tries to remove as 
many redundant variables as possible according to the following 
algorithm: 
for i = 1 to last cube in SOL 

begin 
for j = 1 to max number of input variables 
begin 

temp = cubei[j]; 
cubeilj] = X; 
if cubei n OFF # 4 then 

cubei[j] = temp; 
end; 

end; 

5.2. Hazardless minimization. 

Product implicanm PI1 and PI2 are adjacent when they include 
two minterms, ml 6 PI1 and m2 6 PI2 such that ml and n-12 differ 
in a single bit only (are adjacent in a sense of a Gray code). The 
static hazard in ones occurs in a two-level circuit when there are 
two ANDs realizing adjacent product implicants but lacking a third 
product to cover the adjacent minterms of the two products. The 
result of such hazards is the glitch (short pulse zero) in the output 
before it reaches the stable state 1. 

&ramp/e 4. Let us assume a two-level realization of an expression: 
f = ii.E.d + a.b.F + ii.b.c + a.c.d Assume all the gates have 
the same delay “tpd”. The pair of cells 0101 and 0111 is a pair of 
adjacent minterms not covered by a single implicant. So are also 
the pairs: 0111 and 1111, 1111 and 1101, 1101 and 0101. This is 
then a circuit with four static hazards (this is the same function as 
in Example 3). Depending on the later stages of the circuitry, 
these glitches may cause catastrophic failures to the rest of the 
operation of the circuitry (for instance if hazard occurs in a feed- 
back loop of an asynchronous circuit or if a counter is driven from 
a circuit with hazard) 

By introducing a fifths cube to cover the adjacent l’s between the 
original product implicsnts, we effectively eliminate all four 
hazards. Solution: f = ii.F.d + a.b.T+ Fi.b.e + a.c.d + bd is 
then hazardless. 

One of the features of PALMINI is the ability to correct all the 
static hazards that exist in the solution. After the solution is 
obtained from the Graph Coloring Algorithm and if the hazardless 
option is selected, PALMINI will compute all the consensuses 
which exist among the cubes in SOL. Next it will find all merg- 
ings (distant-one merge groups AB + AB = A ) of consensuses 
and of consensuses and product implicants. This operation is 
repeated until no more groups are created. It will then remove 
consensuses properly included into mergings. The consensuses 
and mergings are attached to SOL as a part of the final solution. 

Below we will present the algorithmic way to find the all hazard 
eliminating cubes. Consensus of two cubes A and B is created as 
follows. First we calculate the bit-by-bit operation star (*) on 
cubes A and B. Star operation per bit is defined in Table 1. 
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* 
0 1 x 

ooeo 

Ilzl 

le i 1 

x0 1 K 
Table 1. 

Next if the resultant cube includes exactly one e, it is changed to 
X. Otherwise the cube is not a consensus of the function. 

Ezatnple 5. From the example 4 above, we have 
cube1 * cube2 = OX01 * 011X = Olel = 01X1. 

Note: Olel contains only one “e”. Therefore, it can be changed to 
‘X”. There are four consensuses in this example: 01X1, 11X1, 
Xl01 and X111. Merging of 01X1 and 11X1 produces cube 
X1X1. All consensuses are now removed since they are covered 
by this cube. This leads to a hazardless solution from Example 4. 

procedure HAZARDLESS( SOL)j 
1. {Find the set of all consensuses cube, of 

cubes from solution SOL} 
for i = 1 to (last cube in SOL - 1) 
begin 

for j = (i + 1) to last cube in SOL 
begin 

cube, = cubei + cubei ; 
{if there is no result of consensus operation cube, is an empty set] 

if cube, is not empty and cube, #SOL 
then add cube, to SOL; 

end; 
end; 
2. Find the set NEW-CUBES of all cubes cube, being results of 

merging operations (cube,,, = cubei m cubei) 
of all cubei and cube,. from SOL} 

for i = 1 to (last cube in SOL - 1) 
begin 

for j = (i + 1) to last cube in SOL 
begin 

cube,,, = cubei m cubei ; 
{ m is a merging operator, if cubes do not merge 

the result cube, is an empty set} 
if cube, is not empty and cube,,, #SOL 
then 

begin 
add cube, to SOL; add cube, to NEW-CUBES; 

end; 
end; 

end; 
3. NEW-CUBES = MERGINGS( NEW-CUBES, SOL) ; 

if NEW-CUBES = 6 
then 
return SOL = SOL with removed cubes 

included in other cubes of SOL; 
else 

begin 
SOL = SOL U NEW-CUBES; 
go to 3 

end; 
function MERGINGS( NEW-CUBES, ALL-CUBES) ; 
NEW-CUBES = 4 ; 
for i = 1 to last cube in NEW-CUBES 

begin 
for j = 1 to last cube in ALL-CUBES 
begin 

cube, = cube; m cubei ; 
if cube, is not empty and cube, f SOL 
then add cube, to NEW-CUBES; 

end; 
end; 

return NEW-CUBES; 

5.3. Flow chart of PALMIM. (variant for a singboutput corn- 
pletely specified function). 

Get input: set SMI <- sum of products. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Find the complementation from this set: 
OFF <- COMPL(SMI) 

If invert polarity option is selected then begin 
SMI <- OFF. 
OFF <- SMI. end. 

If createdisjoint variant selected 
then create disjoint set from SMI: 

SMI <- CREATEDISJOINT(SM1) 
else 
create minimal set from SMI: 

SMI <- CREATEMINIMAL( SMI) 

Create graph GIM: GIM <- GRAPH( SMI, OFF, GIM). 

Color graph GIM to find cost: 
cost <- COLOR( GIM, costl); 

Find solution and store in array SOL. 

If the Static Hazardless option is selected 
then SOL <- HAZARDLESS(SOL). 

If the literal delete option is invoked then 
begin 
delete redundant literals in each term of solution SOL. 
SOL <- DELElELITERAL( SOL, OFF). 

end. 

Solution is now contained in SOL. 

13. PERFORMANCE EVALUATION. 

We have implemented three versions of PALMINI. The first of 
them was written in Fortran [32], the next in Turbo Pascal, the 
last one is in C. The last version has the improved data structure 
for arrays of cubes. In the Pascal version all bits in the cubes are 
realized as elements of two dimensional arrays. Thus all the 
operations operate on arrays. The C version uses computer words 
(registers) to represent cubes which is a much better approach. 
We have tried about thirty examples ranging from 4 terms/4 
inputs to 20 terms/IS inputs. Solutions were compared to those 
of LOGMIN and were the same. 

A set of 9 exampIes is used to demonstrate the discussed here 
variant of algorithm. All tests were done on PC XT compatible 
machine with 8 MHz clock. We have compared it with 
minimizers in ALTERA EPLD software, DATA I/O ABEL, 
which uses PRESTO algorithm, and Espresso, all running on the 
same machine. The algorithm used in ALTERA sotware is an 
order of magnitude slower than PALMINI and is not shown here. 
On the other hand, Presto from ABEL is very reasonable. The 
version used is 1.1 which is much better than version 1.04. 
D epending on the types of functions, sometimes, PALMINI is 
faster than Espresso and sometimes it is not. 

In the following table the numbers of terms and input variables 
are given for each example. Next, the times (in seconds) and 
numbers of terms in solutions are given for PALMINI, ABEL and 
Espresso. 
Ex# Function PALMINI ABEL 1.1 ESPRESSO 

Trm Inp Time TermTime TermTime Term 

1 19 6 2 13 12 13 4.5 14 
2 8 9 2 4 5 4 2 4 
3 15 9 1 4 9 4 2 4 
4 10 10 1 10 12 10 3 10 
5 10 11 2 9 8 9 3 9 
6 12 12 2 10 27 10 3 10 
7 13 13 4 10 26 10 5 10 
8 11 17 9 10 7 10 4 10 
9 20 18 6 17 -- -- 8 17 
__ no answer in 20 minutes. 
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The time under the ESPRESSO column is hand calculated. The 
version of Espresso-mv for PC XT that we have does not permit 
to measure time. Also, we were not able to use -do exact and -do 
single-output parameters described in [27). The above examples 
come from practical industrial PLAs from Intel. We were not able 
to compare with functions provided with Espresso since all the 
functions we dispose have more than one output. When com- 
pared on randomly generated large functions with product impli- 
cants of many literals the results of PALMINI were often worse 
than those of Espresso. More testing is necessary on large single- 
output industrial PLAs. 

With the current version of the program: 
__ 60 %of the time is to compute the complementation. 
__ 20 %of the time is to compute disjoint cubes. 
_- 10 %of the time is to compute graph GIM. 
__ 5 %of the time is to color the graph. 
__ 5 %of the time is to delete the literals. 

The fact that 60 % of the time is used to compute the comple- 
mentation suggests that by having a better algorithm such as the 
one used in Espresso, the speed of the program can be much 
further improved. Currently, the Disjoint Sharp method is 
employed. In fact, the Disjoint Sharp method is not too bad in 
this case, when applied to PAL’s, because PAL can have many 
inputs, 15 or 16, but the outputs can only have at most eight OR 
terms except for the case of C types or PLD types. 

In general, we will have a very limited number of OR terms per 
each output when using PAL’s or PLD’s. So, we will not design 
many OR terms per each output. This will allow the Disjoint Sharp 
method to be manageable because the performance of the Sharp 
operator is proportional to the number of inputs and terms. We 
are currently working on a different algorithm to find the comple- 
mentation of a function. Hopefully, it will enhance the program 
even more. Some of the good approaches to complementation are 
described in 141, [29]. 

7. CONCLUSION AND FUTURE WORK. 

The discussed above examples were taken from examples at work. 
PALMINI has shown us that it indeed gives good solutions within 
an acceptable time frame. Besides the fact that its speed on func- 
tions of small size is comparable or better than ESPRESSO and 
many times faster than ABEL (Presto), it has an useful feature 
which other low cost minimizers do not have. That is Static 
Hazard correction. PALMINI is easily recompiled to be run on 
various personal and home computers which support standard 
PASCAL or C like IBM PC, APPLE, Commodore, and etc. The 
compiled code is small. It can easily fit into 64K of memory. This 
includes all the code and data areas, which permits to use this pro- 
gram together with other memory-resident programs. Executable 
code of PALMINI is only 30K, versus 177K of Espresso. The 
limit of the described here version 2.0 are as follows: 
- up to 64 input variables, 
- up to 60 product terms (due to memory size limits), 

A variants to design multi-output functions and incompletely 
specified functions have been already implemented. We are work- 
ing [ 241 on various extensions to PALMINI like: 
- multi-valued logic (including application to FSM assignment 

method from [ 171, 
- more product terms, 
- multioutput, multilevel functions (PLA and PAL partitioning), 
- improving complementation algorithm by replacing current 

disjoint sharp menthod with a new algorithm, 

Graph coloring can be approximated by a maximum clique prob- 
lem and the Maximum Independent Set Problem can be used for 
finding the approximate solution 1121. Although the exact algo- 
rithm does not search for prime implicants, it is still able to find 
the optimum solution for small and medium size functions. For 
medium size functions we are able to evaluate how far is our solu- 
tion from the minimum one, even without generating this solu- 
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tion. This is done by approximating of graph coloring by Max- 
imum Independent Set Problem. In some cases the optimum 
solution can be proven with limited search. 

The minimal implicants is the only known to us canonical 
representation of Boolean function other then sum of minterms or 
sum of all prime implicants. They also generalize the concept of 
essential implicants and permit to simplify the function before 
graph coloring. Unfortunately the tested by us algorithms for gen- 
eration of minimal implicants were slow. However, recently we 
found a new method to generate such implicants whose imple- 
mentation is hoped to be faster. 
The advantage of reducing to graph coloring is also that the graph 
coloring problem has been thoroughly investigated by computer 
scientists and very fast approximate and optimum algorithms for it 
have been created. Our ultimate goal is to design parallel algo- 
rithms and special hardware for Boolean minimization [23]. We 
find the reduction to graph coloring a useful approach, since paral- 
lel and parallel/probabilistic algorithms for this problem are known 
and special hardware has been proposed. 

We can summarize the limitations of our method as follows: 

1. The reduction and coloring algorithms are fast. The weakest 
part is the complement&ion. Two improvements are possi- 
ble : 
1) better complementation algorithm, 
2) avoid complementation and check inclusion of matchings 
into ON instead of checking intersection of matchings with 
OFF while creating the GIM graph. 
The time to create a graph grows with the second order of 
number of implicants used as nodes. 

2 We feel that many limitations of the program result more 
from the ways of implementation then from the method 
itself. The quality of future versions of PALMINI will 
depend on the quality of graph coloring algorithms. 

Both the complementation and the graph coloring can be solved 
with tree-searching algorithms. When depth-search is used small 
computer memory is sufficient. Also, these methods permit for 
simple parallelization. Implementation on Intel’s hypercube com- 
puter is planned. 

The basic idea of our approach - reducing the covering type prob- 
lems to graph coloring seems to be very general in logic design. 
Using slightly different rules for compatibility of implicsnts the 
approach can be also used for minimization of three-level neb 
works (TANT) [21], two-level networks from negative gates and 
multi-level circuits realized from PLAs and PALS. 
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